RADIUSS CI Documentation

Release 0.1

Adrien M. Bernede

Jan 26, 2023

User Documentation

Background and Motivation 3
Overview 5
2.1 UserGuide o e e e e e e e e e e e e 5
2.2 Developer Guide L e e e e e e e e e 16

RADIUSS CI Documentation, Release 0.1

Documentation of the CI infrastructure developed for RADIUSS projects.

RADIUSS Cl is a sub-project from the RADIUSS initiative focusing on sharing resource and documentation regarding
Continuous Integration among RADIUSS projects.

Note: LLNL’s RADIUSS project (Rapid Application Development via an Institutional Universal Software Stack)
aims to broaden usage across LLNL and the open source community of a set of libraries and tools used for HPC
scientific application development.

User Documentation 1

RADIUSS CI Documentation, Release 0.1

2 User Documentation

CHAPTER 1

Background and Motivation

Projects belonging to the RADIUSS scope are targeting the same machines and use Spack as a packaging system. We
want them to ensure they build with similar tool chains.

We designed an automated CI infrastructure based on GitLab that we meant to be universal enough to be shared
among RADIUSS projects. This infrastructure involves using Spack to setup the project dependencies and generate
a configuration file. This allows projects to easily share the full context of their builds. The project is then built and
tested as usual and most of the CI infrastructure is shared to avoid duplication and ease the maintenance.

RADIUSS CI Documentation, Release 0.1

4 Chapter 1. Background and Motivation

CHAPTER 2

Overview

We split the design in three steps necessary to adopt RADIUSS CI methodology. Those actions will be documented in
the ‘user_guide‘_.

1. Use Spack to configure the project build. Spack provides a single context to express toolchains, machines
setup and build sequence. It is increasingly used to install the dependency tree of large simulation codes.

2. Build and test without breaking your habits. We do not require the adoption of Spack to build your code but
we require that your build system accepts the configuration file generated by Spack as an input (CMakeCache.
txt for CMake build system). That way, dependencies and options are already set coherently with the spec
provided to build the dependency tree.

3. Setup the CI using the shared template. Once you have put in the effort to adopt the first two steps, you
should be able to benefit from the shared CI infrastructure. In very complex scenario, you would still be able to
use the RADIUSS CI template as a starting point for a custom implementation.

In the ‘dev_guide‘_, we discuss the layout of the RADIUSS CI infrastructure and how the different pieces work with
one another. Technical choices are also explained there.

2.1 User Guide

We designed an automated CI infrastructure based on GitLab that we meant to be universal enough to be shared
among RADIUSS projects. This infrastructure involves using Spack to setup the project dependencies and generate
a configuration file. This allows projects to easily share the full context of their builds. The project is then built and
tested as usual and most of the CI infrastructure is shared to avoid duplication and ease the maintenance.

RADIUSS CI Documentation, Release 0.1

- Project N

s N\ A

Uberenv Drives _l

—— Spack local clone ——

Custom Packages Suls)
S { JI M Custom Packages
CMake files = : - .
Radiuss Spack Configs: Spack configuration: |
config.yaml L config.yaml
packages.yaml packages.yaml
compilers.yaml) compilers.yaml

. J

Cached CMake Configs [— Generates _

A ~

Uses
]

Build Script

Jr
Uses
]

Shared Gitlab CI

We split the design in three steps necessary to adopt RADIUSS CI methodology.

6 Chapter 2. Overview

RADIUSS CI Documentation, Release 0.1

2.1.1 Use Spack to configure the project build

Uberenv Drives _l
p .| — Spack local clone ——
Custom Packages SO)
L J| Custom Packages

Radiuss Spack Configs:

X Spack configuration:
config.yaml

SqA config.yaml
packqges.yaml packages.yaml
compilers.yaml J compilers.yaml

Cached CMake Configs [4— Generates —I

T

The first step in adopting RADIUSS CI infrastructure is to setup your project so that Spack can be used to install the
dependencies and generate a configuration file for the build.

The end product should be a script that takes a Spack spec as an input, and returns the configuration file generated by
Spack after installing the dependencies for the given spec.

Spack provides a single context to express toolchains, machines setup and build sequence. Using it will allow us to
share configuration files to describe the toolchains and machines setup. Radiuss-Spack-Configs is the repository where
RADIUSS projects Spack configuration is shared.

Spack is increasingly used to install the dependency tree of large simulation codes. As such, it makes sense to use
Spack early in the development process.

Note: We are not promoting a “Spack everywhere” strategy. But we advocate that Spack should be one of the ways
to configure and build your projects, since you projects will likely be built that way in production someday.

We rely on Uberenv to facilitate the setup of a local and isolated spack instance that will be used to build the project
dependencies. We strongly suggest that you start with Uberenv to benefit from a reliable Spack usage in your CI (tried

2.1. User Guide 7

https://github.com/LLNL/radiuss-spack-configs
https://github.com/LLNL/uberenv

RADIUSS CI Documentation, Release 0.1

and tested) and keep the configuration script simple.

Uberenv Guide

The role of Uberenv will be to manage the setup of your Spack instance and then drive Spack to install your project
dependencies and generate the configuration file.

Note: Uberenv will create a directory uberenv_1ibs containing a Spack instance with the required project de-
pendencies installed. It then generates a CMake configuration file (<config_dependent_name>.cmake) at the
root of the project repository.

One common source of error when using Uberenv is when the uberenv_1ibs folder is out of date. To resolve, make
sure this folder is deleted before running new scripts for the first time because this folder needs to be regenerated.

Getting Uberenv by clone/fetch/copy

1. Get uberenv.py script.
Clone/Fetch/Copy it from Uberenv repository. into a uberenv directory, not as a submodule.
2. Edit uberenv/project.json.

Set your project package name, and other parameters like Spack reference commit/tag (we suggest
the latest release tag).

3. Add radiuss-spack-configs submodule.

e Use git submodule add to get ‘Radiuss_Spack_Configs‘_.

¢ Create a symlink uberenv/spack_configs that points to radiuss-spack-configs.
4. Add custom packages.

If you need to make local modifications to your project package or a dependency package, you may
put it in a corresponding directory:

uberenv/packages/<package_name>/package.py.
5. Make sure that <project>/package.py generates a host-config cmake file.

This is usually done adding a specific stage to the package (see for example the hostconfig stage in
Umpire, CHAI etc.).

Getting Uberenv as a submodule

1. Get uberenv.py script.
Use git submodule add to get Uberenv into a uberenv directory.
2. Edit .uberenv.json.

Create .uberenv. json in a directory that is a parent of uberenv. Set your project package
name, and other parameters like Spack reference commit/tag (we suggest the latest release tag).

3. Add radiuss-spack-configs submodule.

e Use git submodule add to get Radiuss-Spack-Configs in a second submodule or custom location.

8 Chapter 2. Overview

https://github.com/LLNL/uberenv
https://github.com/LLNL/uberenv
https://github.com/LLNL/radiuss-spack-configs

RADIUSS CI Documentation, Release 0.1

e In .uberenv. json set spack_configs_path to point to <some_path>/
radiuss-spack-configs.

4. Add custom packages.

* If you need to make local modifications to your project package or a dependency package, you may put it
in a corresponding directory:

<some_path>/packages/<package_name>/package.py.
e In .uberenv. json set spack_packages_path to point to <some_path>/packages
5. Make sure that <project>/package.py generates a host-config cmake file.

This is usually done adding a specific stage to the package (see for example the hostconfig stage in
Umpire, CHAI etc.).

Get the shared Spack configuration

We share Spack configuration files in ‘Radiuss_Spack_Configs‘_. In this repo you will find:
* config.yaml for Spack general configuration.
* modules.yaml for modules creation by Spack.
* One compilers.yaml and packages.yaml per system type, describing the installed toolchain on each machine.

Depending on the machine/system, we may or may not provide a spack configuration allowing you to use it right away.
Please refer to ‘Radiuss_Spack_Configs‘_ documentation about adding a new machine. This will be welcome by the
RADIUSS teams using it!

Note: MacOS (darwin) case It is not trivial to provide a universal configuration for MacOS. Instead, the developer
will likely have to complete the packages . yaml file in order to adapt the location and version of externally installed
dependencies. MacOS is not available on LC systems, the Spack configuration is provided as-is, for development use.

Setup your Spack package to generate a configuration file

We want to build the dependencies with Spack and then build the project with those dependencies but outside of Spack.
We need to generate a CMake configuration file that reproduces the configuration Spack would have generated in the
same context. It should contain all the information necessary to build your project with the described toolchain and
dependencies.

In particular, the configuration file should setup:
* flags corresponding with the target required (Release, Debug).
 compilers path, and other toolkits (cuda if required), etc.
* paths to installed dependencies.
* any option that may have an impact on your build.

This provides an easy way to build your project based on Spack configuration while only using CMake and a tradi-
tionnal developer workflow.

2.1. User Guide 9

https://github.com/spack/spack
https://github.com/spack/spack

RADIUSS CI Documentation, Release 0.1

CMake projects: Spack CachedCMakePackage

The use of a CMake build system is strongly recommended to adopt RADIUSS CI workflow, that’s because of this
step. With CMake, we can generate a cache file with all the configuration necessary to trigger a build later on. This is
supported in Spack as soon as your package inherits from CachedCMakePackage.

Once your package has been ported, stopping the Spack install after initconfig phase will prevent it from building
your project and the CMake configuration file will have been generated already.

Non-CMake projects: Custom implementation

The only example of a non-CMake project that adopted this workflow is MFEM. Altough it is using a Makefile build
system in its Spack Packages, MFEM is generating a configuration file that can be used just like a CMake configuraton
file. We adapted the implementation of the package to mimics the mechanism available in CMake-based packages.
You may use that as an example.

2.1.2 Build and test without breaking your habits

Build Script

10 Chapter 2. Overview

RADIUSS CI Documentation, Release 0.1

The second step in adopting RADIUSS CI infrastructure is to make sure your project can be built using the configu-
ration file generated by Spack. Other than that, building and testing your code should follow the usual development
workflow.

Spack is not longer involved at this point. But using the configuration file will make sure the build uses the Spack
installed dependencies and the options specified by the Spack spec.

Using configuration files to build the project

The (CMake) configuration files are specific to the desired machine and toolchain. With CMake, the usage is as follow:

mkdir build && cd build

cmake —-C <path-to>/<configuration>.cmake ..
cmake —--build -3

ctest —--output-on-failure -T test

ROEOEE O

In the end, this should not be a major change in the developers habit: this is standard CMake procedure.

Writing a script for Cl

The CI expects a script that:
* isnamed scripts/gitlab/build-and-test.
* is parametrized by the variable SPEC which should contain a Spack spec with the project name stripped out.

* covers both step 1 (installation of dependencies, configuration file generation) and step 2 (build the project from
the configuration file, test it).

The script should therefore be calleable that way:

$ SPEC="%clang@9.0.0 +cuda" scripts/gitlab/build_and_test.sh

Note: Making the CI scripts usable outside CI context is recommended since, by definition, it has been vetted. It also
ensures that this script is usable in interactive mode, making it easier to test. This is why to document it in the build
part rather than the CI part.

Umpire, RAJA, CHAI, MFEM each have their own script you could easily adapt. All these projects use Uberenv to
drive Spack. Umpire, RAJA and CHALI share the Spack configuration files in ‘Radiuss-Spack-Configs‘_ in order to
keep building with the same tool-chains.

Debugging
In the workflow described above, there are 4 levels of scripts to control the build of a package. From the lower to the
higher level:

* The build system is controlled by the configuration file (generated by Spack or not).

» The Spack package is controlled by the spec provided and spack configuration.

» Ubereny takes a spec and a json configuration file.

* A build_and_test script also sometimes called test driver. The one in Umpire and RAJA requires a spec and
some other control variables.

Now, when it comes to debugging, each level has some requirements to reproduce a failing build:

2.1. User Guide 11

RADIUSS CI Documentation, Release 0.1

* The build_and_test script typically runs in CI context. This means that it may not be designed to run outside CI.
It is better if it does, and we try to do that in RADIUSS, but it is not guaranteed. * Uberenv is meant to provide
a turnkey way to install the project and its dependencies. It is usually a good way to reproduce a build on the
same machine. The CI creates working directories in which the uberenv install directory _may_ persist, but it is
better to reproduce in a local clone.

* Reproducing a build with Spack requires a deep knowledge of it. But Uberenv helps a lot with that. We advice
that you use Uberenv to generate the Spack instance. Then, loading the spack instance generated and working
with it is safe.

* Going down to the build system is also doable, especially when using the generated configuration files. Once
spack has installed the dependencies and generated the configuration files, the latter can be used to control the
build of the code and this should not require using Spack.

2.1.3 Setup the Cl using the shared template

Shared Gitlab CI

The third step in adopting RADIUSS CI infrastructure is to setup the CI.

Once you put in the effort to adopt the first two steps, you should be able to benefit from the shared CI infrastructure.
In very complex scenario, you will always be able to use the template as a starting point for a custom implementation.

12 Chapter 2. Overview

RADIUSS CI Documentation, Release 0.1

By sharing the CI definition, projects share the burden of maintaining it. In addition, with our shared CI, they also
share a core set of toolchains (spack specs) to ensure that they keep running tests with similar configurations.

Radiuss Shared CI

Sharing the CI framework started with sharing spack configuration files, a method manage Spack and use it to generate
CMake configuration files and a build-and-test script with that has the same imputs across projects. We will
now also share most of the CI implementation itself.

By externalizing the CI configuration, we create the need for an interface. We try to keep this interface minimalistic,
while allowing customization.

Note: GitLab allows projects to include external files to configure their CI. We rely on this mechanism to share most
of the CI configuration among projects.

The short version

Prerequisites

cd my_project

mkdir -p scripts/gitlab

vim scripts/gitlab/build-and-test
write CI script

CI Setup

cd my_project/..

git clone https://github.com/LLNL/radiuss-shared-ci.git
cd my_project

cp ../radiuss-shared-ci/customization/gitlab-ci.yml .gitlab-ci.yml
mkdir -p .gitlab

cp ../radiuss-shared-ci/customization/custom-*.yml .gitlab

cp ../radiuss-shared-ci/example—-extra-jobs/+—extra.yml .gitlab

vim .gitlab/custom—x*.yml
customize CI

vim .gitlab/x-extra.yml
edit extra jobs

Jump to the corresponding section to deal with Customize CI, Edit extra jobs and Writing a script for CI.

The detailed version

Our CI implementation can be divided in four parts:
* local build-and-test script
* shared files
* customization files
* extra jobs

Setting up the CI will basically consist in four corresponding phases.

2.1. User Guide 13

https://github.com/LLNL/radiuss-spack-configs

RADIUSS CI Documentation, Release 0.1

Write CI Script

The very first step is to provide a CI script. You should already have one after completing ‘write-ci-script‘_ at Step 2.

Once you have that script, you can move on to the CI setup.

Core Cl implementation

Start by cloning the project locally, for example next to the project you intend to add CI to.

cd my_project/..
git clone https://github.com/LLNL/radiuss-shared-ci.git
cd my_project

By default, GitLab expects a .gitlab-ci-yml file to interpret the CI setup. @ We provide one in
customization/gitlab-ci.yml that projects can copy-paste, just be sure to place it at the root of your project,
with a dot (.) at the beginning of the name.

cp ../radiuss-shared-ci/customization/gitlab-ci.yml .gitlab-ci.yml

Your CI is now setup to include remote files from the GitLab mirror of Radiuss-Shared-CI.

We now have to complete the interface with the shared CI config. Indeed, .gitlab-ci.yml also expects some files
to be present locally. Those are the next steps.

Customize CI

We provide templates for the required customization files. We need to copy them in the . gitlab directory.

mkdir -p .gitlab
cp ../radiuss-shared-ci/customization/custom-*.yml .gitlab

We will now browse the files to see what changes they may require to suit your needs.

.gitlab/custom-pipelines.yml

In this file, you will select the machines you want to run tests on. Comment the jobs (sections) corresponding to
machines you don’t want, or don’t have access to.

.gitlab/custom-jobs.yml

No change is strictly required to get started here.

In this file, you may add configuration to the . custom_build_and_test job that will then be included to all you
CI jobs. This can be used for example to export jUnit test reports.

.gitlab/custom-variables.yml

We should now have a look at .gitlab/custom-variables.yml. Here is a table to describe each variable
present in the file. Some more details can be found in the file itself.

14 Chapter 2. Overview

https://github.com/LLNL/Umpire/blob/develop/.gitlab/custom-jobs.yml

RADIUSS CI Documentation, Release 0.1

Parameter Description

LLNL_SERVICE_USER Service Account used in CI

CUSTOM_CI_BUILD_DIR Where to locate build directories (prevent overquota)
GIT_SUBMODULES_STRATEGYontrols strategy for the clone performed by GitLab. Consider
recursive if you have submodules, otherwise comment it.

BUILD_ROOT Location (path) where the projects should be built. We provide a
sensible default.

ALLOC_NAME Name of the shared allocation. Should be unique, our default should
be fine.

<MACHINE>_BUILD_AND_ TE ParanitadE Horathe Ghared allocation. You may extend the resource
and time.

<MACHINE>_BUILD_AND_ Tk Parafiadserd farahie job allocation. You may extend the resource and
time within the scope of the shared allocation.

Note: If a variable is blank in the template file, then it does not require a value. If a variable has a value there, it does
require one.

Warning: We strongly recommend that you set your CI to use a service account.

Edit extra jobs

We provide templates for the extra jobs files. Those files are required as soon as the associated machine has been
activated in .gitlab/custom-pipelines.

If no extra-jobs is needed (the shared jobs are automatically included), then you should add the extra-jobs files as-is,
with a simple variable definition to avoid it to be empty.

If you need to define extra-jobs specific to your projects, then you may remove the variable definition, uncomment the
template job and complete it with the required information:

* A job name, unique, that will appear in CI.

* A Spack spec used by build-and-test to know what to build.

Note: Gitlab supports long and complex job names. Make sure to pick a unique name not to override a shared job.

We also provide an “How To” section.

2.1.4 How To

List the Spack specs tested

RADIUSS Shared CI uses Spack specs to express the types of builds that should be tested. We aim at sharing those
specs so that projects build with similar configurations. However we allow projects to add extra specs to test locally.

Shared specs for machine ruby can be listed directly in Radiuss-Shared-CI:

cd radiuss-shared-ci
git grep SPEC ruby-build-and-test.yml

2.1. User Guide 15

RADIUSS CI Documentation, Release 0.1

Extra ruby specs, specific to one project, are defined locally to the project in .gitlab/
ruby-build-and-test-extra.yml

cd <project>
git grep SPEC .gitlab/ruby-build-and-test-extra.yml

Use Uberenv

$./scripts/uberenv/uberenv.py

Note: On LC machines, it is good practice to do the build step in parallel on a compute node. Here is an example
command: srun -ppdebug -N1 —--exclusive ./scripts/uberenv/uberenv.py

Unless otherwise specified Spack will default to a compiler. It is recommended to specify which compiler to use: add
the compiler spec to the ——spec= Uberenv command line option.

Some options

——spec= is used to define how your project will be built. It should be the same as a spack spec, without the project
name:

* ——spec=%clang@9.0.0
¢ ——spec=%clang@8.0.1l+cuda
The directory that will hold the Spack instance and the installations can also be customized with ——prefix=:
e ——prefix=<Path to uberenv build directory (defaults to ./uberenv_libs)>

Building dependencies can take a long time. If you already have a Spack instance you would like to reuse (in supple-
ment of the local one managed by Uberenv), you can do so with the ——upst ream= option:

e ——upstream=<path_to_my_spack>/opt/spack

Warning: Due to its GitLab CI sharing goal, Radiuss Shared CI is meant to live on LC GitLab instance. The main
repo, hosted on GitHub for accessibility and visibility, is mirrored on LC GitLab. To include files from Radiuss-ClI,
we recommend pointing to the mirror repo on GitLab rather than the GitHub one. We only document that option.

2.2 Developer Guide

There should be two types of contributions to this Radiuss-Shared-CI: adding new shared jobs, contributing changes
to the CI implementation (and documentation).

We provide guidance for both in this section, using an HowTo format where we describe the set of actions to perform
for several practical use-cases.

This section of the documentation also explains some technical choice.

16 Chapter 2. Overview

RADIUSS CI Documentation, Release 0.1

2.2.1 How To

Add a new machine

Adding a new machine can be done directly in this project so that the configuration is shared with all. However it the
associated Spack configuration must first be added to Radiuss-Spack-Configs.

The sub-pipeline definition

To add a new machine, create a corresponding <machine>-build-and-test.yml file describing the sub-
pipeline. There are two main cases: whether the machine uses Slurm or LSF Spectrum as a scheduler.

Machines using Slurm scheduler

For machines using Slurm scheduler, use ruby (or corona) as a starting point. Then replace all the instances of
“RUBY” and “ruby” with the new machine name.

Then goto customization/custom-variables.yml and add the variables:

e <MACHINE>_BUILD_AND_TEST_SHARED_ALLOC with allocation options sufficient for the shared alloca-
tion (salloc) to contain all the jobs.

* <MACHINE>_BUILD_AND_TEST_JOB_ALLOC with allocation options for any of the jobs (srun) the machine

will take. The job will run under the shared allocation, also, do not prescribe a number of cores here, as they
should be defined at Spack and Make/CMake level.

Note: Use the values we have for ruby and corona as guides, but adapt the partition, number of cpus per task and
duration coherently with the machine.

Machines using LSF Spectrum scheduler

For machines using LSF Spectrum scheduler, use lassen as a starting point. Then replace all the instances of
“LASSEN” and “lassen” with the new machine name.

Then goto customization/custom-variables.yml and add the variables:

* <MACHINE>_BUILD_AND_TEST_JOB_ALLOC with allocation options for any of the jobs the machine will
take.

Note: Use the values we have for lassen as guides, but adapt the partition and duration coherently with the machine.

Reference the new sub-pipeline

In customization/custom-pipelines.yml, add a new section corresponding to the new machine. This is
used by customization/gitlab-ci.yml to control which sub-pipelines are effectively generated.

Changelog

Don’t forget to provide a quick description of your changes in the CHANGELOG . md.

2.2. Developer Guide 17

https://github.com/LLNL/radiuss-spack-configs

RADIUSS CI Documentation, Release 0.1

New tag

Once the new machine setup is tested and valid, submit a PR. We will review it and merge it. We may create a new
tag although it is not required for a new machine. Indeed, using a new machine is a voluntary change for users: they
will have to activate it in customization/custom-pipelines.yml the same way you did above (which is a
suggested template).

2.2.2 RADIUSS Shared Cl explained

Radiuss-Shared-CI is an infrastructure and documentation repository created to help RADIUSS projects adopt the
Gitlab CI workflow designed for them.

Project structure

Shared Cl files

This project hosts the shared CI configuration, which can be found in the YAML files at the root of the project:
<machine>-build-and-test.yml.

Each file contains both the configuration and the jobs for one machine. They assume that some entries will be provided
by including the customization files.

Customization files

The customization directory holds all the files allowing to customize the pipeline.

The files custom-pipelines.yml, custom-variables and custom-jobs.yml are all included in the
configuration in gitlab-ci.yml.

Project must use gitlab-ci.yml as a base for the .gitlab—-ci.yml at the root of their project. This files does
not require any change, but can receive additional stages if needed by the project.

Note: We could share .gitlab-ci.yml directly in Radiuss-Shared-CI. However that would require projects to
configure GitLab, through the UI, to use that file. This is not considered a good idea at the moment, and we preffer
projects to have the capability to easily add other stages to their CI configuration.

Both custom-pipelines.yml and custom-variablse.yml are included globally. They will affect all the
CI workflow. The file custom-jobs.yml is included in the build-and-test sub-pipelines and will only affect
those ones.

Extra jobs

Extra jobs can be defined by the user appending .gitlab/${CI_MACHINE}-build-and-test-extra.yml.
We provide a working minimal template that should always be provided.

Note: Strictly speaking, the extra jobs file is only needed once the associated sub-pipeline is reference to .
gitlab-ci.yml through customization/custom-pipelines.yml. We make it presence mandatory for
the sake of simplicity.

18 Chapter 2. Overview

RADIUSS CI Documentation, Release 0.1

Other files

The documentation source code is in the docs directory, while cmake aims at receiving BLT submodule to manage
the local build of the docs.

References

LC specific documentation for Gitlab. In particular, the “Getting Started” and “Setup Mirroring” sub-pages.

2.2. Developer Guide 19

https://gitlab.llnl.gov

	Background and Motivation
	Overview
	User Guide
	Developer Guide

